If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2=18-9x
We move all terms to the left:
10x^2-(18-9x)=0
We add all the numbers together, and all the variables
10x^2-(-9x+18)=0
We get rid of parentheses
10x^2+9x-18=0
a = 10; b = 9; c = -18;
Δ = b2-4ac
Δ = 92-4·10·(-18)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{89}}{2*10}=\frac{-9-3\sqrt{89}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{89}}{2*10}=\frac{-9+3\sqrt{89}}{20} $
| .36=4.9t^2 | | 9+5h=6h | | (x+1)(x-2)=χ²+3 | | x-4/2-1=x-8/3 | | 4(x-1)^2+3=67 | | -1x-3=45 | | 3a/7=-3/4 | | 39/2m-13=17/2 | | 1/5=x+1/6 | | 1/3x-2/7(1/2x-2/3)=4 | | X-15x-218=104 | | 0=(5-8i)-(-8-4i) | | -14=-5x+6 | | 3(0-2=6(1)-3y | | 6(Y+8)=3(2y–7) | | 6/9m+10=118 | | (-3)/2x+9=0 | | 73+3y-10=180 | | 3(-3.5+3y)=6y+(-3.5+3y)-6 | | 3(5y-1)=2(6y+4) | | x2=x+12-144 | | X-158+6x=94 | | (1)/x+19=0 | | 0=(4-6i)+(1-8i) | | 6(9m)+10=118 | | 5x^2-20x+10=-5 | | 3y+6/3=y+2 | | 3(h-4)=-1/2(25-6h) | | B-5=3+3b | | y(0.5)=16(0.5)-16(0.5)^2 | | 6×9m+10=118 | | 3(x-5)=2x+12 |